

Geographical variation in the diet within and between the harbour seals (*Phoca vitulina*), grey seals (*Halichoerus grypus*) and Baltic ringed seals (*Pusa hispida*) inhabiting the greater Baltic Sea.

Camilla Hjorth Scharff-Olsen

KU-account name: wxk703

Supervisor: Morten Tange Olsen

Institut: Statens Naturhistoriske Museum

Delivered: 26/10 2015

Frontpage foto by Fred Bavendam (Scanpix): Voksen spættet sæl i karakteristisk hvilestilling.

Abstract

The aim of the study is to investigate if there is a geographical variation in the diet within and between the harbour seal (*Phoca vitulina*), the grey seal (*Halichoerus grypus*) and the Baltic ringed seal (*Pusa hispida*) within the greater Baltic Sea. I reanalysed data that I had gathered from previous surveys that have had collected scats and/or examined seals digestive tracts to find and identify otoliths and/or other hard parts from fish. The three seal species diets were then compared from various areas within the Danish Straits and the Baltic Sea, to examine if a geographical difference occurs. The results indicate that there is a geographical variation within the diet of harbour seals, even though some fish species e.g. cod (*Gadus morhua*) and sand lances (*Ammodytes sp.*) occurred as primary prey items at more than one location. The results also indicate some geographical variation within the diet of grey seals, but Atlantic herring (*Clupea harengus*) constitute a substantial part of the diet at several locations. However, no geographical variation is found within the Baltic ringed seal diet.

There seems to be a geographical variation between the diets of the harbour and the grey seal from the Southwestern Baltic Sea, nevertheless dab (*Limanda limanda*) and black goby (*Gobius niger*) are found as some of the primary food items in both seal species. Overall, there seems to be some geographical variation between the diet of the grey and the Baltic ringed seal in the Finnish Baltic Sea, Gulf of Finland and Gulf of Bothnia, even though they both prey on herring. However, the ringed seal preys substantially on three-spined sticklebacks (*Gasterosteus aculeatus*), which the grey seal rarely does. No geographical overlap occurs between the harbour seal and the Baltic ringed seal in the Danish Straits or the Baltic Sea, hence their diets have not been compared.

Table of Contents

ABSTRACT	3
INTRODUCTION	6
MATERIALS AND METHODS	9
RESULTS	12
Diet of the three seal species	
The harbour seal	
The grey seal	
The Baltic ringed seal	
Geographic variation in the diet between the three seal species	
Comparison of the harbour and Baltic ringed seal	
Comparison of the harbour and grey seal in the Southwestern Baltic Sea	
Comparison of the grey and Baltic ringed seal	
The Finnish Baltic Sea	
The Gulf of Finland	
The Gulf of Bothnia	
DISCUSSION	19
Diet of the three seal species	
The Harbour seal	
The Grey seal	
The Baltic ringed seal	
Geographic variation between the three seal species diets	
Comparison of the harbour and Baltic ringed seal	
Comparison of the harbour and grey seal in the Southwestern Baltic Sea	
Comparison of the grey and Baltic ringed seal	
Gulf of Bothnia	
Gulf of Finland	
Finnish Baltic Sea	
Conflicts with the fisheries	
Potential errors	

Future changes and conclusion	
ACKNOWLEDGEMENTS	27
REFERENCES	28
APPENDIX A	31
APPENDIX B	35
APPENDIX D	40
	41
APPENDIX F	43
APPENDIX G	45
APPENDIX H	46

Introduction

Conflicts between commercial fisheries and seals are escalating in many countries including Denmark, Sweden and Finland (Hoffmann et al. 2015; Kauhala et al. 2011; Larsen et al. 2015; Lunneryd 2005). Many of these conflicts began after the seal populations started to recover from a long period of culling (Larsen et al. 2015). The recovery of seals began with the protection of them e.g. in Denmark the harbour seal (Phoca vitulina) became protected, first in 1967 where they were protected against hunting during their breeding season, and later on in 1977 where both the harbour seal and the grey seal (Halichoerus grypus) became completely protected (Jepsen et al. 2005). In Finland the grey seal became protected in 1982 and the Baltic ringed seal (Pusa hispida) in 1986 (Stenman & Pöyhönen 2005). Currently, the conflicts are increasing between the harbour seal and the fisheries in Limfjorden, Kattegat and in the Southwestern (SW) Baltic Sea (Hoffmann et al. 2015; Larsen et al. 2015). In addition, the Swedish coastal fisheries are also suffering big economic losses due to the conflicts with the seal populations (Lunneryd 2005). The complains from the fishermen comprise of; the seals destroying their gear, eating their catches, dispersing parasites which reduce the value of the fish flesh and the seals presence decreases the presence and availability of commercially important fish species (Heide-Jørgensen 1987; Larsen et al. 2015). It is however still unclear whether the seals have an effect on the fish stocks and if so, to which extent they affect the fish and fisheries. Hansen & Harding (2006) investigated the potential impact of harbour seals on the cod (Gadus morhua) population in the eastern North Sea and their analysis indicated a negligible impact on the cod fishery. Similar results is established in a study from the Scotian Shelf, Canada, by Mohn & Bowen (1996) who found that a grey seal population, even though it was increasing, was not the major factor of the collapse of the Atlantic cod stock. Additionally, the consumption of the herring (*Clupea harengus*) in the Bothnian Sea by grey seals is estimated by Gårdmark et al. (2012) to have a low impact on the abundance of the herring population, even though the grey seal population has increased fivefold. Lindegren et al. (2011) furthermore suggests that resource availability and interspecific competition is a more important factor, which affects the herring stock in the Bothnian Sea compared to fisheries, predation by marine mammals and predatory fish species. Hence, it is important to investigate the diet of harbour seals, grey seals and Baltic ringed seals, to further examine if there is a potential for conflict between the fishery and the seals, but also to better understand the seals ecological role in the marine ecosystem.

Three seal species, the harbour seal, the grey seal and the Baltic ringed seal, are associated with the greater Baltic Sea region, which includes the Danish Straits. However, Baltic ringed seal are typically associated to the inner parts of the Baltic Sea, e.g. Bothnian Bay, nevertheless they also inhabit the Gulf of Finland, the Archipelago Sea, the Gulf of Riga and the Estonian coastal waters (HELCOM 2009). However, the grey seals are present in dispersed groups throughout the Baltic Sea, nevertheless, they are generally concentrated in the Northern part of the Baltic Proper (HELCOM 2009). The harbour seals occur in the Southwestern part of the Baltic Sea and throughout the Danish Straits (Fig. 1) (HELCOM 2009).

Harbour seals are typically associated with coastal waters (Larsen *et al.* 2015) and are known as being generalists, polyphagous and opportunistic feeders (Andersen *et al.* 2004; Andersen *et al.*

2007; Härkönen 1987; Olsen & Bjørge 1995) though they might focus on certain key species (Härkönen 1987; Olsen & Bjørge 1995; Tollit & Thompson 1996). However, these key species can vary seasonally (Andersen *et al.* 2007; Härkönen 1987; Olsen & Bjørge 1995; Tollit & Thompson 1996) and geographically (Andersen *et al.* 2007; Härkönen 1987; Härkönen 1988b; Olsen & Bjørge 1995). Studies indicate that harbour seals prefer foraging at the seabed at depths of 30 meters or less, with none or scarce vegetation (Härkönen 1988a; Olsen & Bjørge 1995). Similarly are the grey seals considered to be generalists and opportunistic feeders (Stenman & Pöyhönen 2005; Suuronen & Lehtonen 2012). However, Grellier & Hammond (2006) suggest that grey seal populations might be a collection of specialists or that a population contains both specialist and generalists. The grey seals are also associated with coastal waters (Hoffmann *et al.* 2015), but they are also known to forage at larger distances from the coast and the colonies compared to harbour seals (Dietz *et al.* 2003).

Baltic ringed seals are also found to be generalist (Sinisalo *et al.* 2008) and opportunistic (Stenman & Pöyhönen 2005) feeders.

The aim of this study is to investigate if there is a geographical variation within and between the harbour seal, grey seal and Baltic ringed seal diet in the Danish waters and the Baltic Sea. This will be examined by analysing data gathered from several published and unpublished studies (Appendix A). Then, the diet of the three different seal species will be compared from various areas within the greater Baltic Sea, to see if a geographical variation occurs. Only fish species will be analysed in the different seal diets, however also crustaceans and other invertebrates have been identified in several studies (Sinisalo 2007; Sinisalo *et al.* 2008; Söderberg 1975).

Figure 1: Map of the greater Baltic Sea showing the distribution of the three seal species; harbour seal (*Phoca vitulina*), grey seal (*Halichoerus grypus*) and Baltic ringed seal (*Pusa* hispida), examined in this study as well as a picture of how each species look. Colour code on the map; Red: Where harbour seals is distributed; Orange: Where both harbour and grey seals are distributed; Yellow: Where grey seals are distributed; Green: where both grey seals and Baltic ringed seals are distributed. Harbour seal image by Mary Plaige (gettyimages.com): Common seal on seashore. Grey seal image by Craig Jones: Female grey seal on beach. Baltic ringed seal image by Doug Allan: Ringed seal profile.

Materials and methods

Data has been gathered from published and unpublished studies to investigate the geographic variations in the diet of seals in the Danish waters and the Baltic Sea (Table 1; Appendix A). These studies span over four decades, from 1975 to 2014, and the samples have been collected in Limfjorden, Skagerrak, Kattegat and within the Baltic Sea (Fig. 2).

Figure 2: An ICES (2015) map of the Danish waters and the Baltic Sea. The letters indicates different areas of the Danish waters and the Baltic Sea where seals and scats have been collected. A: Limfjorden; B: Skagerrak; C: Kattegat; D: Southwestern Baltic Sea; E: Kalmarsund; F: Gotland; G: Swedish Baltic Sea (incl. western Baltic Proper); H: Finnish Baltic Sea (incl. Archipelago Sea & eastern Baltic Proper); I: Gulf of Finland; J: Gulf of Bothnia. See table 1 for further information about which studies that collected which seal species and/or scats at the different locations or Appendix A for detailed information about the studies.

The samples have been collected differently in the various studies, but it was either seal scats or whole seal individuals that have been collected (Table 1; Appendix A). The scats and digestive tracts were then examined, typically to find otoliths from fish and/or other hard parts. Afterwards the otoliths and hard parts were identified to family and species level if possible. The results in each individual study is presented in different ways e.g.; as the total count of otoliths found, as the estimated weight percentage, or just as a lists with an overview of which families or species they found in their samples. Therefore, to compare the data I constructed presence/absence tables and when possible I estimated the total number of otoliths recovered, if this was not already presented in the studies.

Table 1: Shows the symbols used on the map (Fig. 2) and a reference to the studies which collected and investigated the samples within the different areas and which seal species the collected sample(s) was. The squares highlighted with grey indicates that the samples from that specific seal species was collected within that area. The squares that are blank, indicates that there were no samples of that seal species collected within that area. See Appendix A for information about the number of samples and sampling periods where the surveys were collected and conducted.

Symbols on the map	Location	Harbour seals (Phoca vitulina)	Grey seals (Halichoerus grypus)	Baltic ringed seals (Pusa hispida)	Reference(s)
Α	Limfjorden	,		• ´	1
В	Skagerrak				2
С	Kattegat				3
D	Southwestern Baltic Sea				4
Е	Kalmarsund				5
F	Gotland				6
G	Swedish Baltic Sea*				7
Н	Finnish Baltic Sea**				8
I	Gulf of Finland				9
J	Gulf of Bothnia				10

¹ Andersen et al. (2007) and Friis et al. (1994). ² Härkönen (1987) and Härkönen & Heide-Jørgensen (1991). ³ Härkönen (1988a) and Strömberg et al. (2013). ⁴ Andersen et al. (2007) and Jarnit (2014). ⁵Söderberg (1975). ⁶Asp (2011). ⁷Strömberg et al. (2013), Söderberg (1975) and Lundström et al. (2007). ⁸ Stenman & Pöyhönen (2005) and Kauhala et al.(2011). ⁹ Stenman & Pöyhönen (2005) and Tormosov & Rezvov (1978). ¹⁰ Lagström (2007), Lundström et al. (2014), Sinisalo (2007), Sinisalo et al. (2008; 2006), Strömberg et al. (2013), Söderberg (1975) and Suuronen & Lehtonen (2012).

*including north-western Baltic Proper

** including Archipelago Sea & North-eastern Baltic Proper

The data from Asp (2011), Härkönen (1988a), Härkönen & Heide-Jørgensen (1991), Friis *et al.* (1994) and Jarnit (2014) was already given in the total number of otoliths found from each prey species, so here I did nothing to change the unit.

In Andersen *et al.* (2007), Lundström *et al.* (2007), Suuronen & Lehtonen (2012), Lagström (2007) and Söderberg (1975), they had divided the total number of otoliths, or the highest number of either left or right sided otoliths found with two, to get an estimate of the number of individuals eaten. Hence, I multiplied by two to get an estimate of the total number of otoliths found from each prey species.

Härkönen (1987) have the data as weight percentage and Tormosov & Rezvov (1978), Strömberg *et al.* (2013), Lundström *et al.* (2014) and Kauhala *et al.* (2011) have the data in frequency of

occurrence. Because there were no counts in these studies of how many otoliths were recovered, I have used a "p" to indicate that the species was present and found at least once.

Stenman & Pöyhönen (2005), Sinisalo (2007) and Sinisalo *et al.* (2008; 2006) only mention which fish species that were found in their investigation, but do not tell how many of each. Hence, the fish species that were mentioned in their studies, have been indicated with a "p" in my analysis to show that the species were present and found at least once.

In some of the studies (Lagström 2007; Sinisalo 2007; Sinisalo *et al.* 2008; Sinisalo *et al.* 2006; Söderberg 1975; Tormosov & Rezvov 1978) they found and included crustaceans and invertebrates in their results. However, in my study, only fish is being analysed and therefore the crustaceans and invertebrates have been excluded from the analysis, but please note that they were found in several studies. Furthermore, empty stomachs and intestines were also found, as well as some individuals whom had ingested small stones (Sinisalo 2007; Sinisalo *et al.* 2008; Sinisalo *et al.* 2006), but these have not been included in this study either. To compare which fish species that were eaten at the different geographic locations by each seal species, all the otoliths that were counted and those species indicated with a "p", from all the studies were grouped together for each of the 10 locations (A-J). From this grouped data, three tables were constructed to show which fish species were present and absent within each of the seal species diets in the different areas. The grouped data was moreover used to investigate and compare the geographical variations between the diets of the three seal species. This was done by only using the locations where two of the seal species were found, and then making a table showing which fish species were present and absent in both seal species diets.

Furthermore, based on the numbers of otoliths from each prey species, excluding the fish species that were only indicated with a "p", I calculated the frequency of occurrence of each fish species within each area for the different seal species.

In summary, the results are presented both in terms of presence/absence and in terms of the number of otoliths when such data was available. All data analyses were performed in Microsoft Excel 2013.

Results

Diet of the three seal species

The harbour seal

A total of 52 fish species were recovered from the harbour seal samples within all the areas where these were collected (Appendix B).

In Limfjorden (A), Harbour seals prey on a minimum of 18 fish species (Table 2; Appendix B). They primarily feed on black goby (*Gobius niger*) (29.6%) and sand goby (*Pomatoschistus minutus*) (29.6%) and to a lesser extent on viviparous eelpout (*Zoarces viviparus*) (13.3%) and sprat (*Sprattus sprattus*) (10.8%) (Appendix E).

A minimum of 40 fish species were identified as prey items to the harbour seals in Skagerrak (B) (Table 2; Appendix B). This is the highest amount of prey species identified between all three seal species investigated, but also between all 10 locations where samples were collected. In Skagerrak, they typically feed on Norway pout (*Trisopterus esmarkii*) (23.6%) and unidentified sand lances (*Ammodytes sp.*) (19.1%), whereas whiting (*Merlangius merlangus*) (12.6%) and Atlantic cod (11.4%) are fed on to a lesser extent (Appendix E).

At least 21 fish species were identified from the harbour seal samples collected in Kattegat (C) (Table 2; Appendix B). In the Kattegat, one of the primary food sources is unidentified sand lances (39.1%) but also dab (*Limanda limanda*) (37.7%) are an important prey item at this location (Appendix E).

In the SW Baltic Sea (D) were 21 fish species found in the collected samples (Table 2; Appendix B). However, lesser sand eel (*Ammodytes tobianus*), black goby and Atlantic cod are the primary food items, consisting of 44.5%, 15.1%, 11.5% of the harbour seals diet, respectively (Appendix E).

Harbour seals are found to prey on a minimum of 5 fish species in Kalmarsund (E), this is the least prey species found at any location where harbour seal samples were collected (Table 2; Appendix B). However, only 48 otoliths were recovered in the samples collected in Kalmarsund. Out of these 48 otoliths, are 20 from European eel (*Anguilla anguilla*) (41.7%), 8 from Atlantic cod (16.7%), 8 from European flounder (*Platichthys flesus*) (16.7%) and another 8 from European whitefish (*Coregonus lavaretus*) (16.7%) (Appendix E).

The grey seal

A total of 46 fish species were recovered from the grey seal samples within all the areas where these were collected (Appendix C).

In the SW Baltic Sea (D) have a minimum of 9 fish species been identified (Table 2; Appendix C). However, only 31 otoliths were recovered from the grey seal samples collected at the SW Baltic Sea. 12 (38.7%) of these are identified as black goby and 9 (29.0%) as round goby (*Neogobius melanostomus*) (Appendix F).

Also in the samples collected at Gotland (F) are a minimum of 9 fish species identified (Table 2; Appendix C). Nevertheless, in the samples from Gotland 530 otoliths were recovered and the

primary food items identified are Atlantic herring, sprat and Atlantic cod which consisted of 32.6%, 31.3% and 24.5% of the grey seal diet, respectively (Appendix F).

A minimum of 32 fish species are identified in the samples from the Swedish Baltic Sea (G) (Table 2; Appendix C). This is the highest amount of identified prey species found when comparing the 6 locations where grey seals have been sampled. Atlantic herring are the dominating food item found in the Swedish Baltic Sea with 6908 (70.4%) out of the 9808 otoliths recovered from this location, and are followed by the sprat (9.4%) (Appendix F).

Grey seals are found to prey on a minimum of 17 and 9 fish species in the Finnish Baltic Sea (H) and the Gulf of Finland (I), respectively (Table 2; Appendix C). However, none of the studies used in the grouped data for the Finnish Baltic Sea (Kauhala *et al.* 2011; Stenman & Pöyhönen 2005) and the Gulf of Finland (Tormosov & Rezvov 1978) informed, how many otoliths they recovered from the samples. Therefore, it is not possible to calculate the frequency of occurrence for each prey species identified from the samples within these two areas.

In the Gulf of Bothnia (J) a minimum of 17 fish species were identified (Table 2; Appendix C). 3716 otoliths were recovered in the samples of grey seal collected in the Gulf of Bothnia. 24.4% of the otoliths are herring and 36.8% are vendace (*Coregonus albula*). 9.8% are unidentified otoliths and an additional 7.9% of the otoliths are recognized to belong to the Coregonus family, but not further specified to species level (Appendix F).

The Baltic ringed seal

A total of 20 fish species were recovered from the Baltic ringed seal samples within all the areas where these were collected (Appendix D).

In the Finnish Baltic Sea (H) and the Gulf of Finland (I), the Baltic Ringed seals were found to prey on a minimum of 5 and 7 fish species, respectively (Table 2; Appendix D). However, there is no information presented about how many otoliths that have been recovered in the studies included in the grouped data of the Baltic ringed seals from these two areas (Stenman & Pöyhönen 2005; Tormosov & Rezvov 1978). Hence, it is not possible to calculate the frequency of occurrence of each prey species in the diet of ringed seals at these two locations.

A minimum of 20 fish species were identified as prey items for the Baltic ringed seal in the Gulf of Bothnia (Table 2; Appendix D). This is the highest number of fish species that the ringed seals has been found to feed on out of the three areas where the samples have been collected. Out of 4474 otoliths recovered from the Baltic ringed seal samples collected in the Gulf of Bothnia, 73.8% are identified as three-spined sticklebacks (*Gasterosteus aculeatus*) and 13.6% as Atlantic herring (Appendix G).

Geographic variation in the diet between the three seal species

Comparison of the harbour and Baltic ringed seal

The habitats of the Baltic ringed seal and the harbour seal do not overlap geographically, hence their respective diets have not been compared (Fig. 1).

Comparison of the harbour and grey seal in the Southwestern Baltic Sea

Samples from both harbour seals and grey seals have been collected from the SW Baltic Sea. Lesser sand eel (44.5% and 3.2%), black goby (15.1% and 38.7%), round goby (0.3% and 29.0%), sand goby (0.1% and 3.2%), dab (6.3% and 9.7%) and plaice (*Pleuronectes platessa*) (1.8% and 6.5%) are all found in the diet of both the harbour seal and the grey seal within this area, respectively (Fig. 3; Fig. 4; Appendix H). Hence, a minimum of 5 out of a total of 21 and 9 fish species are fed on by both the harbour seals and the grey seals, respectively (Table 2; Appendix H). However, as previously mentioned, only 31 otoliths were recovered from the grey seal samples collected at this location.

Comparison of the grey and Baltic ringed seal

The grey seal and Baltic ringed seal samples that have been collected, overlap in three geographical areas; The Finnish Baltic Sea, the Gulf of Finland and the Gulf of Bothnia. However, the only results from the Finnish Baltic Sea and the Gulf of Finland are whether the fish species have been found or not.

The Finnish Baltic Sea

In the Finnish Baltic Sea, 5 fish species out of a total of 17 and 5 fish species were found in the diet of both grey seals and ringed seals, respectively. The 5 species are: Herring, three-spined sticklebacks, European whitefish, Atlantic salmon (*Salmo salar*) and brown trout (*Salmo trutta*) (Appendix H).

The Gulf of Finland

In the Gulf of Finland there are herring, sprat, river lamprey (*Lampetra fluviatilis*) and viviparous eelpout found. Hence, the same 4 species out of 9 and 7 fish species are found in the diet of both grey seals and ringed seals, respectively (Table 2; Appendix H).

The Gulf of Bothnia

In the Gulf of Bothnia, both the grey seal and ringed seal, feed on the same 13 fish species out of a total of 17 and 20 fish species found in their diet, respectively(Table 2; Appendix H). Unidentified sand lances (present and 1.6%), herring (24.4% and 13.6%), sprat (0.9% and present), three-spined sticklesback (0.1% and 73.8%), smelt (*Osmerus eperlanus*) (1.7% and 2.2%), perch (*Perca fluviatilis*) (1.0% and present), river lamprey (0.1% and present), vendace (36.8% and 2.6%), European whitefish (8.0% and 2.4%), Atlantic salmon (0.8% and 0.5%), brown trout (3.9% and 0.4%), unidentified salmonids (*Salmo sp.*) (0.5% and present) and viviparous eelpout (present and 0.3%) are all found in both grey seal and ringed seal diet, respectively (Fig. 4; Fig. 5; Appendix H).

Table 2: A list of; how many fish species that was found, the estimated number of otoliths recovered and the total number of scats and digestive tracts that have been examined for each of the three seal species; harbour seal (*Phoca vitulina*), grey seal (*Halichoerus grypus*) and Baltic ringed seal (*Pusa hispida*) within each geographic area. Symbols on the map refers to figure 1. See Appendix A for further information about season and references to the original studies.

		H	larbour seal	s:		Grey seals:		Baltic ringed seals:		
Symbols on the map:	Area:	The minimum number of fish species found:	Estimate of the total number of otoliths recovered:	The total number of scats and digestive tracts examined:	The minimum number of fish species found:	Estimate of the total number of otoliths recovered:	The total number of scats and digestive tracts examined:	The minimum number of fish species found:	Estimate of the total number of otoliths recovered:	The total number of scats and digestive tracts examined:
Α	Limfjorden	18	12245	138 scats						
В	Skagerrak	40	7408	346 scats						
C	Kattegat	21	2187	123 scats & 44 digestive tracts						
D	Southwestern Baltic Sea	21	1513	17 scats & 17 digestive tracts	9	31	9 scats			
E	Kalmarsund	5	48	7 digestive tracts						
F	Gotland				9	530	41 scats			
G	Swedish Baltic Sea				32	9808	282 digestive tracts			
Н	Finnish Baltic Sea				17	?	697 digestive tracts	5	?	126 digestive tracts
Ι	Gulf of Finland				9	?	43 digestive tracts	7	?	58 digestive tracts
J	Gulf of Bothnia				17	3716	174 digestive tracts	20	4474	141 digestive tracts

Figure 3: Map of the most frequently occurring prey species (>5%) recovered in the samples of harbour seals (*Phoca vitulina*) from Limfjorden, Skagerrak, Kattegat, Southwestern Baltic Sea and Kalmarsund.

Figure 4: Map of the most frequently occurring prey species (>5%) recovered in the samples of grey seals (*Halichoerus grypus*) from Southwestern Baltic Sea, Gotland, Swedish Baltic Sea and the Gulf of Bothnia.

Figure 5: Map of the most frequently occurring prey species (>5%) recovered in the samples of the Baltic ringed seal (*Pusa hispida*) from the Gulf of Bothnia.

Discussion

Diet of the three seal species

The Harbour seal

The results indicate a geographical variation within the diet of the harbour seal. Nevertheless, some fish species e.g. cod and sand lances occur in the diet from several areas. This can be due to the abundance and distribution of these fish species in these areas, e.g.: The cod is a marine species, thus it is most abundant in the saline areas such as the southernmost part of Kattegat, the southern and open Baltic, and Skagerrak (Bagge et al. 1994; HELCOM 2009; Hoffmann et al. 2015). This coincides with the results of where harbour seals are found to most frequently feed on cod. The frequency of sand lances eaten by harbour seals increases from Skagerrak, through Kattegat and into the SW Baltic Sea. This increase in frequency could indicate that sand lances possibly increase in abundance, or that the diversity of fish species decreases, thus sand lances might become more important in the diet. Kattegat have a sandy seabed, thus have a smaller species diversity due to fewer niches (Härkönen 1988a). However, the increase in occurrence of sand lances in the diet can also be influenced by where the samples were collected. Three out of the four studies, which collected samples in Skagerrak, have been collected at Koster (Härkönen 1987; Härkönen & Heide-Jørgensen 1991; Härkönen 1988a). Koster is known to have a diverse rocky shore habitat with vegetation (Härkönen 1988a) which is not the typical environment for lesser sand eel or sand lances in general, which typically prefer sandy bottoms (O'Connell & Fives 1996) such as in Kattegat (Härkönen 1988a).

The lesser sand eel is known to be a coastal, demersal species (Härkönen 1988a) occurring down to 30 meters depth (Bonisławska *et al.* 2014; O'Connell & Fives 1996). Cods, whiting, flounder and black gobies are also benthic species (Härkönen 1988a; Höglund & Thomas 1992; Tomczak *et al.* 2013) which all occur frequently in the diet of the harbour seal at one or more locations. This supports the notion that the harbour seal prefer to forage on the seabed (Härkönen 1987; Härkönen & Heide-Jørgensen 1991; Härkönen 1988a). Nevertheless, pelagic fish species e.g. sprat (Tomczak *et al.* 2013), are also found as a frequent part of the diet at certain locations.

Another predator also known to feed on the seabed are the great cormorant (*Phalacrocorax carbo*). In addition, Andersen *et al.* (2007) established that both the great cormorants and harbour seals forage on some of the same fish species within the same areas. This leaves potential for interspecific competition between the harbour seal and great cormorant. Nevertheless, the great cormorants generally feed in shallow waters, whereas the harbour seal usually forage down to 30 meters (Härkönen 1988a). Thus, the competition might not be so direct between the two predators.

Several studies (Friis *et al.* 1994; Härkönen 1987; Härkönen & Heide-Jørgensen 1991) suggest that the geographic variation found in the diet of the harbour seal is simply a reflection of the species composition, prey availability and which fish species is most abundant in the given area. This indicates that the harbour seals are generalised and opportunistic predators. On the contrary, other studies have had indications of, that at some locations the locally abundant fish species have rarely been consumed by the seals (Härkönen & Heide-Jørgensen 1991; Härkönen 1987). This could indicate that the seals are specialising on certain prey items or that they are unable to catch

these abundant species (Härkönen & Heide-Jørgensen, 1991). Lunneryd (2001) suggested that the individual seals might have a "personal" preference to certain prey items and this could be why we see a varying diet even within the same area.

The Grey seal

The results indicate that there are some geographical variations within the diet of grey seals. However, Atlantic herring are found as a substantial part of the grey seal diet in five out of the six sampled areas. Other studies had also concluded that herring had been the most important prey item in the Gulf of Finland, Finnish Baltic Sea and the northwestern (NW) Baltic Sea (Tormosov & Rezvov 1978; Kauhala *et al.* 2011; Stenman & Pöyhönen 2005). This could indicate that there are no geographical variations in the diet within the NW part of the Baltic Sea. Nevertheless, when considering the other frequently occurring prey items e.g. cod, sprat, vendace and gobies, hence there seems to be some geographic variation.

It can be speculated that the minor geographical variation found in the grey seal diet, is due to which species that are available in the different areas, which is also suggested in a previous study (Lundström *et al.* 2007). For instance, vendace are only found as a substantial part of the grey seal diet in the Gulf of Bothnia. This coincides with Ådjers *et al.* (2006) who found that vendace have been caught mainly in the northern most areas and preferred cold waters. In addition, sprat have a more southerly distribution in the Baltic Sea (Kauhala *et al.* 2011) and cod are more abundant in areas with more salinity e.g. the southern and open Baltic (HELCOM 2009). The results of this study also indicate that both species occur more frequently in the diet from the samples that have been collected at southerly locations. Hence, it is probable that further analysis could support the idea that grey seal are generalists and opportunistic feeders that feed on what is easily accessible within the given area (Stenman & Pöyhönen 2005; Suuronen & Lehtonen 2012).

In the Gulf of Finland Tormosov & Rezvov (1978) concluded that cod consisted of 11% of the grey seal diet. Nevertheless, in the Gulf of Finland the salinity is only around 2.0 PSU or less (Bonisławska *et al.* 2014; HELCOM 2009) whereas the Baltic Proper have 8.0 PSU and the Bothnian Sea have 5.0 PSU (HELCOM, 2009). Hence, it seems unlikely that the cod have been found constituting 11% of the diet in the Gulf of Finland. However, grey seals are known to swim long distances and in general move around more throughout the year compared to e.g. the harbour seal (Dietz *et al.* 2003). This could possibly explain the occurrence of cod in the diet of grey seals in the Gulf of Finland. Nevertheless, it could also be that the species composition was different in 1978 where the study has been published.

The results from Kauhala *et al.* (2011) indicate a difference in prey preference between the genders of the grey seal: that males feed on more varied fish species than females. They discuss that this difference could be selectivity seen in the females, caused by them having a greater energy demand than the males. However, another possible explanation could be that the males actually take longer foraging trips than females, thus a larger diversity of prey species are found in their diet (Sinisalo *et al.* 2008; Kauhala *et al.* 2011).

The results from Lundström *et al.* (2007) indicate that age between the sampled individuals as well as area had a significant effect on the diet composition. Furthermore, it was discovered that the young grey seal individuals eat more non-commercial species, whereas the adults feed on more economically important fish species (Lundström *et al.* 2010). Thus, the age of the sampled

individuals could influence the variations that are seen in the diet of grey seals. In addition, Kauhala *et al.* (2011) discusses that seals younger than 1 year of age, due to inexperience include fish in their diet, which were rarely fed on by adults. This can be why we occasionally find only a few otoliths from certain fish species e.g. zander (*Sander lucioperca*) or lumpsucker (*Cyclopterus lumpus*).

Both herring and sprat are pelagic species (Härkönen 1988; Tomczak *et al.* 2013) and these constitute a substantial number of the prey items of the grey seal at least in the northern Baltic Proper, Gulf of Bothnia and Gulf of Finland (Kauhala *et al.* 2011; Stenman & Pöyhönen 2005; Tormosov & Rezvov 1978). Hence, the grey seals, at least in this area, might prefer to feed on pelagic species. Nevertheless, also benthic species e.g. cod, round goby and black goby (Härkönen 1988a; Höglund & Thomas 1992; Kvach & Winkler 2011) are primary food sources in the SW Baltic Sea as well as cod in the northern part, which makes a possible preference for either benthic or pelagic species inconclusive.

The Baltic ringed seal

It has only been possible to calculate at which frequencies the different fish species occurs in the Gulf of Bothnia. The result indicate that three-spined stickleback are the primary prey item followed by herring within the Gulf of Bothnia. In addition, Stenman & Pöyhönen (2005) concluded that the Baltic ringed seals primary food source was herring, but also that the ringed seal frequently fed on three-spined stickleback within the Finnish Baltic Sea. Furthermore, according to Tormosov & Rezvov (1978), also in the Gulf of Finland, the three-spined stickleback were, together with the herring, the most common food items for the ringed seal, with a frequency on 34% and 33%, respectively. Hence, there are no geographical variations in the primary prey items of the Baltic ringed seal within its distribution in the Baltic Sea. The studies differ however as to which of the two species is the most important.

According to Lundström *et al.* (2014) had the feeding patterns of the Baltic ringed seal seemed to change in the Bothnian Bay since the 1970's, with an increase in the consumption of herring, vendace and three-spined stickleback, and a decrease in invertebrates. However, according to my results, the vendace are of relatively minor importance in the Baltic ringed seal diet from the Gulf of Bothnia. However, Sinisalo *et al.* (2006) concludes that there was a variation in the feeding habits amongst individual ringed seals. This could possibly help to explain why such a difference in the importance of vendace in the diet are seen. Furthermore, Sinisalo (2007) discusses if the quality of the food influences feeding specialisation of individual seals or if the individual seals become imprinted to forage on specific prey items as young. However, the difference in the importance of vendace in the diet could potentially be due to when and where in the Gulf of Bothnia, as well as other places, the samples have been collected.

Three-spined sticklesbacks are typically adapted to areas with low salinity, which makes the Gulf of Bothnia and Finland a seemingly ideal habitat with a salinity around 2.0 PSU or less (Bonisławska *et al.* 2014; HELCOM 2009). Hence, the Baltic ringed seals seems to be opportunistic feeders that feed on the species that are available, which have also been suggested in a previous study (Sinisalo 2007). On the contrary, three-spined sticklebacks are rarely recovered from the samples of the grey seals in these areas, thus it could be speculated that the Baltic ringed seals have specialised to feed on the three-spined sticklebacks. Furthermore, three-spined stickleback and herring are both pelagic

species (Härkönen 1988a; Tomczak *et al.* 2013) which indicates that the Baltic ringed seals primarily feeds on pelagic fish species.

Studies have also discovered that Baltic ringed seals possibly feed on crustaceans and other invertebrates. Söderberg (1975) discovered that the ringed seal feeds on two crustacean species; *Mesidothea entomon* and *Mysis relicta* during April-May and besides these two months they were not found during the rest of the year. At this period the females are nursing, thus they might not leave their pups alone for too long to go foraging, and therefore could rely on nearby crustaceans to feed on (Sinisalo *et al.* 2006; Sinisalo *et al.* 2008). However, cod are also found to feed on *Mesidothea entomon* (Bagge *et al.* 1994), thus another explanation could be that prior to being eaten by the seal, the cod could have consumed a *Mesidothea entomon* and therefore, the hard parts from the crustacean are found in the seals digestive tracts or scats.

Geographic variation between the three seal species diets

Comparison of the harbour and Baltic ringed seal

None of the collected samples of the Baltic ringed or the harbour seal overlap geographically (Fig. 1). Therefore, the diet of the two seal species cannot be compared within each area.

Comparison of the harbour and grey seal in the Southwestern Baltic Sea

The samples of the harbour and the grey seal only overlap in the SW Baltic Sea. There are primarily variations between the two seal species diets at this location. Out of the 5 fish species which are found in the diet of both grey seals and harbour seals, only two fish species, dab and black goby, are among the primary prey items to both. Hence, both prey items could be a potential for competition between the two seal species. However, dab seems to be only of minor importance to both seal species, when comparing the frequencies of otoliths recovered from the other primary prey items, e.g. lesser sand eel in the harbour seal diet or the round goby in the grey seal diet (Fig. 3; Fig. 4). However, only 31 otoliths have been recovered in the grey seal samples at this location. Hence, more samples would need to be collected of grey seals from the SW Baltic Sea to get a more conclusive result of their diet.

Comparison of the grey and Baltic ringed seal

A geographical overlap is present between the grey seal and the Baltic ringed seal samples collected in: the Finnish Baltic Sea, the Gulf of Finland and the Gulf of Bothnia.

Gulf of Bothnia

The results indicate that there is geographical variation between grey and Baltic ringed seals in the Gulf of Bothnia. Even though both species frequently prey on the herring, the ringed seal consumes more three-spined stickleback. Conversely, the results indicate that the three-spined sticklebacks are insignificant in the grey seal diet. Furthermore, vendace are important in the diet of grey seals where it is of minor importance in the ringed seal diet. Nevertheless, competition could occur between the two seal species in relation to the herring (Fig. 4; Fig. 5).

Gulf of Finland

It seems that there is a relatively small difference in the diet of grey seals and Baltic ringed seals in the Gulf of Finland. According to Tormosov & Rezvov (1978), herring are very important for both species consisting of 33% and 34% in ringed seals and grey seals diet, respectively. Viviparous eelpout are also found to be of some importance in their study, constituting 6% in ringed seals diet and 10% in grey seals. However, they found that three-spined sticklebacks are the most important species to Baltic ringed seals constituting 34%. In addition, the grey seals also frequently feed on cod (11%) and lampreys (13%) (Tormosov & Rezvov 1978). This causes some differentiation between the two seal species diets in the Gulf of Finland.

Finnish Baltic Sea

It seems that a relatively small variation occurs between the Baltic ringed seals and the grey seals in the Finnish Baltic Sea. Herring are the most important prey item for both grey seals and ringed seals (Stenman & Pöyhönen 2005; Kauhala *et al.* 2011) which indicates a minor variation in the diet and a potential for competition over this species. However, Stenman & Pöyhönen's (2005) results also indicated that the ringed seals frequently fed on three-spined sticklebacks, however they do not mention if the grey seal fed on this species. In addition, Kauhala *et al.* (2011) notes that they found three-spined sticklebacks in the diet of grey seals but not to which extent. Hence, this suggests some variation in the diet between the grey and Baltic ringed seal within the Finnish Baltic Sea.

Conflicts with the fisheries

According to the results, cod is one of the primary food sources for the harbour and grey seal. However, cod are also important for the fisheries, which causes conflicts between seals and the fisheries. Nevertheless, studies have discovered that seal predation have a lower impact on the cod population and recovery in the Baltic Sea and in the eastern North Sea, compared to the effects of harvest by the fisheries and the salinity (Hansen & Harding 2006; MacKenzie *et al.* 2011). However, in Øresund (Denmark), the decline of caught cod is so immense that Larsen *el al.* (2015) states that if it continues, then in a few years there will not be any cod fishing left in the southern part of Øresund.

Herring also constitutes a substantial amount of the diet of Baltic ringed seals and grey seals but to a lesser extent in the harbour seal diet. Furthermore, herring is one of the most important fish species for the commercial fisheries in the Baltic Sea, hence causes conflicts. Even though the consumption of herring seems vast, studies have shown that at least the grey seal predation on herring has a low impact on the abundance of herring and that other factors affect the herring stock more than seal predation (Gårdmark *et al.* 2012; Lindegren *et al.* 2011). Since the Baltic ringed seal are few in number compared to the grey seal population, it seems probable that they would have an insignificant impact on the herring stock.

For the harbour seal, eels are the most common prey item at Kalmarsund. This high amount of eel in the diet of the harbour seal at the Swedish coast could be due to the Swedish eel fisheries. The damage to fishing gear and catch losses have increased in the Swedish eel fishery and are primarily caused by the harbour seal (Königson *et al.* 2006). In a study by Königson *et al.* (2006) they found that it was only certain seal individuals in each area, who specialised in attacking the fishing gear. Specifically fyke nets were attacked primarily to feed on eels. Conversely,

Lunneryd (2001) found that the seals feeding from the cages refused to eat the eels, which suggest that they had been attracted to other prey items. Nevertheless, it is interesting to consider that the seals foraging e.g. on eel fyke nets might have specialised to this type of foraging. Therefore, culling of random seal individuals within certain populations most likely will not reduce this conflict since probably not all seal individuals will be specialised foragers (Sinisalo *et al.* 2006). Thus, if culling is to take place it has to be of those individuals, which are seen foraging of the eel fyke nets. However, another way of reducing these conflicts could be to improve the fishing gear so that it is harder for the seal to break in and eat the eel or other catches (Sinisalo *et al.* 2006).

The results from Jounela *et al.* (2006) indicates that there is an extensive catch loss for the fishery, particularly in the southern Gulf of Bothnia of salmon due to seal attacks. However, I found that salmon was of insignificant importance in the diet of both grey seals and ringed seals in the Gulf of Bothnia. In addition, also Stenman & Pöyhönen (2005) discovered that none of their samples of both grey seals and ringed seals, which had drowned in salmon nets in the Finnish Baltic Sea, had consumed salmon. This indicates that the seals probably are not going for the catch when they become entangled in the nets. Nevertheless, a possible explanation as to why I did not find large amounts of salmon could be due to; the otoliths of salmon being fragile towards digestions (Tollit *et al.* 2007), the head of the salmon was not ingested because of their typically larger size (Pitcher 1980) or the timing and location of the sampling period. Suuronen & Lehtonen (2012) discovered that salmon were only recovered in digestive tracts of grey seals during June-July. This is possibly related to the salmons spawning migration, which takes place in late May, and peaks in late June (Suuronen & Lehtonen 2012). It is also worth noting, that Suuronen & Lehtonen (2012) suggested that the grey seals could be a specialised predator, since grey seals in their study chose salmon over herring, even though herring were more abundant.

The conflicts are also escalating in the Danish Straits. Currently, in Kattegat only a few professional fisheries are present, if any at all. In addition, many fishers have given up on fishing in Limfjorden due to the many conflicts with seals (Larsen *et al.* 2015). Another issue, which is starting to occur, is that some harbour seal individuals have started to enter the streams e.g. Skjern å and Storå, to forage primarily on salmon and trout (Larsen *et al.* 2015).

In the Baltic Sea a restricted culling of seal occurs in Sweden but also Finland, Estonia as well as in the North Sea in Scotland and Norway (Larsen *et al.* 2015). Nevertheless, in the Wadden Sea both grey and harbour seals are completely protected (Larsen *et al.* 2015). However, a culling of the seal population might not reduce the conflicts, because even if the seal predation is eliminated, this would not necessarily mean that the fisheries catches would increase. Since, the seals also predate on other fish species e.g. cod, and the cod predates on yet another fish species e.g. the herring, which the fishermen also exploits (Gårdmark *et al.* 2012; Söderberg 1975). Hence, the seal indirectly enhances the survival of e.g. herring, by feeding on the competitors and predators e.g. the cod (Hansen & Harding 2006; Heide-Jørgensen 1987; Tormosov & Rezvov 1978).

Perhaps hunting seals that approach the fishing gear, might be a possible way to reduce the seal attacks (Jounela *et al.* 2006), since these individuals might be specialised foragers to feed of the fishing gear. Another thing to take into consideration when discussing the culling of seals, is the potentially negative effect it could have on the ecotourism that the country and/or local

community might have on the seals. Because, if humans starts to hunt seals, they would become more scared and shy of human presence, which could cause them to flee when we approach them. Besides culling, another possible solution could be to improve the gear that the fishermen use and make it more "seal-proof" and/or to reduce the by-catch. Königson *et al.* (2007) found that the damage frequency decreased with modified fyke nets that had smaller mesh sizes, yet not to a completely acceptable level.

However, Larsen et al. (2015) suggested that it is possible that the economic consequences that the seals have on the fishery business are not as big as the loud debate makes it seem. However, it is understandable that the attacks from seals must be irritating for the fishermen, nevertheless, the economic loss might only be minor compared to their total income. Of course in certain areas, the conflict is so significant that it leaves the fishermen with big economic losses e.g. Limfjorden and Østersøen (Larsen et al. 2015). However, the fisheries and humans might also affect the seals fitness and survivability negatively, especially the younger individuals, by inducing fluctuations in the availability of prey (Härkönen & Heide-Jørgensen 1991).

Potential errors

When determining the diet by using recovered otoliths and/or hard parts from scats and digestive tracts, there is a potential for bias, which can influence the results and obscure them in relation to the actual prey species and amount eaten.

A benefit of using scats to investigate the diet is that you do not have to kill the animal as you do when investigating digestive tracts. However, when analysing diet from otoliths and hard parts found in scats or digestive tracts, you only get an idea of what the predator has eaten within a few hours or days before (Grellier & Hammond 2006; Prime 1979).

When the fish are eaten, the otoliths can erode partly or be completely digested when moving through the digestive tract of the seal (da Silva & Neilson 1985; Jobling & Breiby 1986; Prime 1979). It appears that larger otoliths have a better recovery rate than smaller otoliths (Grellier & Hammond 2006). Hence, the smaller the consumed fish was, the greater is the probability of the otolith to be completely digested and underestimated (Prime 1979; da Silva & Neilson 1985). Furthermore, when the otoliths erode they can become harder to identify to species level (da Silva & Neilson 1985).

Studies have concluded that there is a difference in the degree of digestion and erosion: between different fish species (Prime 1979; da Silva & Neilson 1985; Jobling & Breiby 1986), between different individuals within the same fish species (Jobling & Breiby 1986; Tollit et al. 2007), as well as between different seals species (Casper *et al.* 2006; Marcus *et al.* 1998). Furthermore, meal size, meal frequency, meal composition and the seals activity could further affect the degree of otoliths and other hard parts digestion and recovery (Marcus *et al.* 1998; Casper *et al.* 2006). It also happens that the seal does not eat the head of their prey but only the body, hence no otolith of this prey individual will be recovered (Brown & Mate 1983; Pitcher 1980).

Seals that die entangled in fishing gear or are shot close to fishing gear might have a distorted abundance of otoliths in the digestive tracts compared to their "natural" food intake and could negatively affect the results (Söderberg 1972). However, Lundström et al. (2007) found no difference in the composition of prey species when comparing seals collected from fishing gear and

elsewhere. However, larger datasets are to be emphasized to try and get as close as possible to the accurate estimation of the seals diet.

To improve the results of diet composition based on the analysis of otoliths and other hard parts, the use of species-specific correction factors could be beneficial. However, in a study by Lundström et al. (2007) they found that correction factors barely changed their results. Hence, correction factors have not been applied in this study.

Seasonal variation have in previous studies been discovered to occur (Andersen *et al.* 2007; Härkönen 1987; Olsen & Bjørge 1995; Tollit & Thompson 1996). Hence the time of the year where the samples have been collected could potentially influence the composition of species recovered from scats and digestive tracts as well as their importance in the diet. For some of the areas e.g. the Gulf of Finland have grey seal samples only been collected during summer. Hence if the diet varies throughout the year, some of the fish species that are considered important during the summer might not be found important in other seasons of the year. Thus, it might not even be possible to group together and compare the data from the same areas that have been sampled in different seasons, since each season possibly should be considered apart from each other. In addition, comparing two seal species diets with each other within the same region could be flawed if the samples are not collected in the same season and possibly even at the same year due to fluctuations in the fish stocks from year to year.

Future changes and conclusion

The results indicate a geographical variation within the diet of harbour seals, even though some fish species e.g. cod and sand lances occurred as primary prey items at more than one area. In addition, the results indicate some geographical variation within the diet of grey seals, but Atlantic herring is a substantial amount of the diet in several areas. No geographical variation was discovered within the Baltic ringed seal diet between the three sampled areas.

There seems to be a geographical variation between harbour seals and grey seals from the SW Baltic Sea, nevertheless dab and black goby are found as some of the primary food items in both species. Overall, it seems likely that there is some geographical variation between the diet of grey seals and Baltic ringed seals in the Finnish Baltic Sea, Gulf of Finland and Bothnia, even though they both prey on herring. Because, ringed seals prey substantially on three-spined sticklebacks, which the grey seal rarely does.

Furthermore, no geographical overlap occurs between the harbour seal and the Baltic ringed seal in the Danish Straits or the Baltic Sea, hence their diets have not been compared.

Conflicts are reported to occur between the seals and the commercial fisheries, however to possibly a lesser extent than it sounds. However, if the seals are to be culled, it would seem most beneficial to go for the seals found close to the fishing gear, since it seems that these individuals specialise in attacking the gear. Hence, a random culling of the population would probably not ease the conflicts. Otherwise, trying to make the fishing gear "seal-safe" could be beneficial and hopefully help ease the conflicts.

Because the data analysed in this study has been collected over almost 40 years (from 1975-2014) differences in food preference is expected to have changed throughout the years. Thus,

it is uncertain if the results of this study actually represents the seal diets today. Nevertheless, the results do give an overview of which species might be preferred in the various areas investigated. Besides using otoliths alone, multiple different methods could be combined when studying the diet of seals to get a more accurate picture of their diet. For example, the combined use of DNA analysis together with otoliths is a possible way to estimate diet composition which might reduce some of the biases from both methods alone (Tollit *et al.* 2009). Nevertheless, DNA analysis alone cannot determine the abundance of the various species eaten, only whether they are present or not (Bowen & Iverson 2013). However, studies are trying to successfully quantify the species composition by using DNA (Bowles *et al.* 2011; Deagle & Tollit 2007).

Other methods to include when investigating the diet of seals could be fatty acids analysis of blubber (Käkelä & Hyvärinen 1998; Lind *et al.* 2012), or parasite burdens together with stable isotope ratios (Sinisalo 2007). The methods that record parasites have pros and cons since parasites only occur in infected animals, so if the seal feeds off uninfected individuals you will not see it (Sinisalo 2007).

When we have a better picture of the food intake and species composition of seals diet, it will help us understand the impact that seals have on the fish stocks in the Baltic Sea and Danish Straits, as well as their role in the marine ecosystem. This will help us to take a decision on what management plans to follow (Gårdmark *et al.* 2012).

Future work could be to create an online database where data concerning seals diet within different areas are entered and available for everyone, of course with limited editing possibility for the general public so only published and/or acknowledge information is published in the database. Furthermore, adding information about the distribution and frequency of occurrence of the fish species within different areas could be a beneficial tool when understanding seals choice of prey. Yet another thing to add, could be the areas where fishermen usually catch which fish species and where conflicts occur with seals. All to gain a better understanding of the conflicts and the seals biology.

In the future, we might see a change in the diet of the seals as the Baltic Sea and Danish waters possibly will change due to global warming which can cause a change in the species composition. If the seals are generalists and opportunist, they should change their diets as the species composition changes. However, if they are primarily specialised feeders, they might be negatively affected by this possible shift in species composition, of course depending on which fish species that will be best adapted to the possible global changes ahead.

Acknowledgements

A special thanks to Morten T. Olsen for his guidance and help. In addition, a big thanks to Karl Lundström for his help providing data from published and unpublished studies investigating seals diets from Sweden and Finland.

References

- Andersen SM, Lydersen C, Grahl-Nielsen O, Kovacs KM (2004) Autumn diet of harbour seals (*Phoca vitulina*) at Prins Karls Forland, Svalbard, assessed via scat and fatty-acid analyses. *Canadian Journal of Zoology* 82, 1230-1245.
- Andersen SM, Teilmann J, Harders PB, Hansen EH, Hjollund D (2007) Diet of harbour seals and great cormorants in Limfjord, Denmark: interspecific competition and interaction with fishery. *Ices Journal of Marine Science* **64**, 1235-1245.
- Asp A (2011) En pilotstudie över gråsälens (Halichoerus grypus) födoval runt Gotland.
- Bagge O, Thurow F, Steffensen E, Bay J (1994) The Baltic cod. Dana 10, 1-28.
- Bonisławska M, Tański A, Szulc J, Machula S, Formicki K (2014) Water salinity effects on embryogenesis of the lesser sandeel, Ammodytes tobianus (Linnaeus, 1758). *Central European Journal of Biology* **9**, 1068-1077.
- Bowen WD, Iverson SJ (2013) Methods of estimating marine mammal diets: A review of validation experiments and sources of bias and uncertainty. *Marine Mammal Science* **29**, 719-754.
- Bowles E, Schulte PM, Tollit DJ, Deagle BE, Trites AW (2011) Proportion of prey consumed can be determined from faecal DNA using real-time PCR. *Molecular Ecology Resources* **11**, 530-540.
- Brown RF, Mate BR (1983) Abundance, movements, and feeding habits of harbor seals, *Phoca vitulina*, at Netarts and Tillamook Bays, Oregon. U S Fish and Wildlife Service Fishery Bulletin **81**, 291-301.
- Casper RM, Gales NJ, Hindell MA, Robinson SM (2006) Diet estimation based on an integrated mixed prey feeding experiment using Arctocephalus seals. *Journal of Experimental Marine Biology and Ecology* **328**, 228-239.
- da Silva J, Neilson JD (1985) Limitations of using otoliths recovered in scats to estimate prey consumption in seals. *Canadian Journal of Fisheries and Aquatic Sciences* **42**, 1439-1442.
- Deagle BE, Tollit DJ (2007) Quantitative analysis of prey DNA in pinniped faeces: potential to estimate diet composition? *Conservation Genetics* **8**, 743-747.
- Dietz R, Teilmann J, Henriksen OD, Laidre K (2003) Movements of seals from Rødsand seal sanctuary monitored by satellite telemetry. Relative importance of the Nysted Offshore Wind Farm area to the seals. *National Environmental Research Institute, Denmark*, 44.
- Friis LW, Jensen AH, Molzen J, Rebsdorf M (1994) Harbour seal diet in the central broads of Limfjorden, Denmark. *Flora og Fauna* **100**, 57-62.

Grellier K, Hammond PS (2006) Robust digestion and passage rate estimates for hard parts of grey seal (Halichoerus grypis) prey. Canadian Journal of Fisheries and Aquatic Sciences 63, 1982-1998.

- Gårdmark A, Östman Ö, Nielsen A, et al. (2012) Does predation by grey seals (*Halichoerus grypus*) affect Bothnian Sea herring stock estimates? *Ices Journal of Marine Science* **69**, 1448-1456.
- Hansen BJL, Harding KC (2006) On the potential impact of harbour seal predation on the cod population in the eastern North Sea. *Journal of Sea Research* **56**, 329-337.
- Heide-Jørgensen MP (1987) Do harbour seals compete with commercial fisheries in the Kattegat?
- HELCOM (2009) Biodiversity in the Baltic Sea An integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea. *Balt. Sea Environ* **Proc. No. 116B**.
- Hoffmann E, Lockyer C, Larsen F, et al. (2015) Udvalget om Miljøpåvirkninger og fiskeriressourcer. Delrapport vedr. topprædatorer. *DFU-rapport* **113-02**.
- Härkönen T (1987) Seasonal and regional variations in the feesing-habits of the harbor seal, *Phoca vitulina* in the Skagerrak and the Kattegat. *Journal of Zoology* **213**, 535-543.
- Härkönen T, Heide-Jørgensen MP (1991) The harbor seal *Phoca vitulina* as a predator in the Skagerrak. *Ophelia* **34**, 191-207.
- Härkönen TJ (1988a) Food-habitat relationship of harbor seals and black cormorants in Skagerrak and Kattegat. *Journal of Zoology* **214**, 673-681.
- Härkönen TY (1988b) Feeding ecology and population dynamics of the harbour seal (*Phoca vitulina*) in Kattegat-Skagerrak. *Dissertation Abstracts International C European Abstracts* **49**, 393-393.
- Höglund J, Thomas K (1992) The black goby *Gobius-niger* as a potential paratenic host for the parasitic nematode *Anguillicola crassus* in a thermal effluent of the Baltic. *Diseases of Aquatic Organisms* **13**, 175-180.
- ICES (2015) http://www.ices.dk/marine-data/maps/Pages/default.aspx.
- Jarnit S (2014) Identification of otoliths used in the estimation of grey seals (*Halichoerus grypus*) diet composition at Rødsand, Denmark. *Bachelor thesis, University of Copenhagen* 9/1-2014.

- Jepsen PU (i samarbejde med Arbejdsgruppen vedrørende sæler) (2005) Forvaltningsplan for spættet sæl (*Phoca vitulina*) og gråsæl (*Halichoerus grypus*) i Danmark. *Miljøministeriet, Skov- og Naturstyrelsen* **J.nr. SN 2001-361-0004**.
- Jobling M, Breiby A (1986) The use and abuse of fish otoliths in studies of feeding habits of marine piscivores. Sarsia **71**, 265-274.
- Jounela P, Suuronen P, Millar RB, Koljonen ML (2006) Interactions between grey seal (*Halichoerus grypus*), Atlantic salmon (*Salmo salar*), and harvest controls on the salmon fishery in the Gulf of Bothnia. *Ices Journal of Marine Science* **63**, 936-945.
- Kauhala K, Kunnasranta M, Valtonen M (2011) Hallien ravinto Suomen merialueella 2001-2007 alustava selvitys. *Suomen Riista* **57**, 73-83.
- Kvach Y, Winkler HM (2011) The colonization of the invasive round goby *Neogobius melanostomus* by parasites in new localities in the southwestern Baltic Sea. *Parasitology Research* **109**, 769-780.
- Käkelä R, Hyvärinen H (1998) Composition of polyunsaturated fatty acids in the liver of freshwater and marine ringed seals (*Phoca hispida ssp.*) differs largely due to the diet of the seals. *Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology* **120**, 231-237.
- Königson S, Hemmingsson M, Lunneryd S-G, Lundstrom K (2007) Seals and fyke nets: An investigation of the problem and its possible solution. *Marine Biology Research* **3**, 29-36.
- Königson SJ, Lundstrom KE, Hemmingsson MMB, Lunneryd S-G, Westerberg H (2006) Feeding preferences of harbour seals (*Phoca vitulina*) specialised in raiding fishing gear. *Aquatic Mammals* **32**, 152-156.
- Lagström C (2007) Födosammansättning hos gråsäl (*Halichoerus grypus* L.) samt test av flotte för insamling av sälfekalier. *Student project*.
- Larsen F, Krog C, Klaustrup K (2015) Kortlægning af sælskader i dansk fiskeri. DTU Aqua-rapport nr. 299-2015. Institut for Akvatiske Ressourcer, Danmarks Tekniske Universitet.
- Lind Y, Backlin BM, Lundstrom K, et al. (2012) Stability of fatty acid composition in seal blubber during longterm storage. *Marine Ecology Progress Series* **461**, 283-291.
- Lindegren M, Östman Ö, Gårdmark Á (2011) Interacting trophic forcing and the population dynamics of herring. *Ecology* **92**, 1407-1413.
- Lundström K, Bergenius M, Aho T, Lunneryd SG (2014) Födeval hos vikaresäl i Bottenviken:. Aqua reports 2014:1.
- Lundström K, Hjerne O, Alexandersson K, Karlsson O (2007) Estimation of grey seal (*Halichoerus grypus*) diet composition in the Baltic Sea. *NAMMCO Scientific Publications* **6**, 177-196.
- Lundström K, Hjerne O, Lunneryd SG, Karlsson O (2010) Understanding the diet composition of marine mammals: grey seals (*Halichoerus grypus*) in the Baltic Sea. *Ices Journal of Marine Science* **67**, 1230-1239.
- Lunneryd SG (2001) Fish preference by the harbour seal (*Phoca vitulina*), with implications for the control of damage to fishing gear. *Ices Journal of Marine Science* **58**, 824-829.
- Lunneryd SG (2005) It's not the seals that are threatened today, it's the coastal fishermen. *In symposium on biology and management of seals in the Baltic area, Helsinki, 15-18 February, 2005. Finn. Game Res.* **346**, 25.
- MacKenzie BR, Eero M, Ojaveer H (2011) Could Seals Prevent Cod Recovery in the Baltic Sea? *Plos One* **6**, 9.
- Marcus J, Bowen WD, Eddington JD (1998) Effects of meal size on otolith recovery from fecal samples of gray and harbor seal, pups. *Marine Mammal Science* **14**, 789-802.
- Mohn R, Bowen WD (1996) Grey seal predation on the eastern Scotian Shelf: Modelling the impact on Atlantic cod. *Canadian Journal of Fisheries and Aquatic Sciences* **53**, 2722-2738.
- O'Connell M, Fives JM (1996) The biology of the lesser sand-eel Ammodytes tobianus L in the Galway Bay area. Biology and Environment-Proceedings of the Royal Irish Academy **96B**, 191-191.
- Olsen M, Bjørge A (1995) Seasonal and regional variations in the diet of harbour seal in Norwegian waters. Developments in Marine Biology; Whales, seals, fish and man **4**, 271-285.
- Pitcher KW (1980) Stomach contents and feces as indicators of harbor seal, *Phoca vitulina*, foods in the Gulf of Alaska. *Fishery Bulletin* **78**, 797-798.
- Prime JH (1979) Observations on the digestion of some gadoid fish otoliths by a young common seal. *ICES Marine Mammals Committee* CM 1979/N:1914.
- Sinisalo T (2007) Diet and foraging of ringed seals in relation to helminth parasite assemblages.
- Sinisalo T, Jones RI, Helle E, Valtonen ET (2008) Changes in diets of individual Baltic ringed seals (*Phoca hispida botnica*) during their breeding season inferred from stable isotope analysis of multiple tissues. *Marine Mammal Science* **24**, 159-170.

- Sinisalo T, Valtonen ET, Helle E, Jones RI (2006) Combining stable isotope and intestinal parasite information to evaluate dietary differences between individual ringed seals (*Phoca hispida botnica*). *Canadian Journal of Zoology-Revue Canadienne De Zoologie* **84**, 823-831.
- Stenman O, Pöyhönen O (2005) Food remains in the alimentary tracts of the Baltic grey and ringed seals. Symposium on Biology and Management of Seals in the Baltic area, Helsinki, 15–18 February 2005. Report 346, Finnish Game and Fisheries Research Institute, Helsinki, Finland., 51-53.
- Strömberg A, Svärd C, Karlsson O (2013) Dietstudier av gråsäl (*Halichoerus grypus*) i Östersjön och knubbsäl (*Phoca vitulina*) i Skagerrak och Kattegatt insamlade 2010.
- Suuronen P, Lehtonen E (2012) The role of salmonids in the diet of grey and ringed seals in the Bothnian Bay, northern Baltic Sea. *Fisheries Research* **125**, 283-288.
- Söderberg S (1972) Sälens födoval och skadegörelse på laxfisket i Östersjön. Undersökning utförd på uppdrag av Svenska Ostkustfiskarenas Centralförbund. 60 pp.
- Söderberg S (1975) Feeding habits and commercial damage of seals in the Baltic. *Proceedings from the Symposium on the seal in the Baltic*, 66-78.
- Tollit DJ, Heaslip SG, Barrick RL, Trites AW (2007) Impact of diet-index selection and the digestion of prey hard remains on determining the diet of the Steller sea lion (*Eumetopias jubatus*). *Canadian Journal of Zoology-Revue Canadianne De Zoologie* **85**, 1-15.
- Tollit DJ, Schulze AD, Trites AW, et al. (2009) Development and application of DNA techniques for validating and improving pinniped diet estimates. *Ecological Applications* **19**, 889-905.
- Tollit DJ, Thompson PM (1996) Seasonal and between-year variations in the diet of harbour seals in the Moray Firth, Scotland. *Canadian Journal of Zoology-Revue Canadianne De Zoologie* **74**, 1110-1121.
- Tomczak MT, Dinesen GE, Hoffmann E, Maar M, Stottrup JG (2013) Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): Evidence of a recent regime shift? *Estuarine Coastal and Shelf Science* **117**, 178-187.
- Tormosov DD, Rezvov GV (1978) Information on the distribution, number and feeding habits of ringed and grey seals in the gulfs of Finland and Riga in the Baltic Sea. *Riistatieteellisia Julkaisuja* **37**, 14-17.
- Ådjers K, Appelberg M, Eschbaum R, et al. (2006) Trends in coastal fish stocks of the Baltic Sea. Boreal Environment Research 11, 13-25.

Appendix A

Appendix A: An overview of the studies I have been collecting data from to reanalyse. Furthermore, Information about which seal species the various studies were investigating, where the seals was collected, when the seals was collected, how the seals was collected and what was collected and analysed.

Reference to study	Harbour seal (Phoca vitulina)	Grey seal (Halichoerus grypus)	Baltic ringed seal (Pusa hispida)	Geographic location where samples were collected	Season/time period & year when samples collected	How did they investigate the diet? And how was their data presented?
Andersen <i>et al.</i> (2007)	n=106 scats	0	0	Nissum Bredning (western Limfjord) & Løgstør Bredning (inner Limfjord)	During spring, summer & autumn of 1997 and spring 1998	Otoliths found in scats & digestive tracts. Sorted otoliths into left- and right-sided, and estimated the number of fish eaten. Diet was shown as the estimated
	n=13 scats + 17 digestive tracts			Rødsand reserve/area(south of Falster island, south- western Baltic)	Scats from Rødsand were collected during March to November of 2001-2005	number of fish eaten.
Asp (2011)	0	n=41 scats	0	Salvorev (N 58° 1' E 19° 21'), Rute Missloper (N 57° 46' E 19° 5'), Raude Hunden (N 56° 58' E 18° 21') & Näsrevet (N 57° 3' E 18° 9'), at Gotland.	Collected seal scats in year 2010, from 9th-11th May, 19th-23th May, 14th-18th June, in the end of August, September- October, and in the beginning of November. As well as in the beginning and mid- January 2011.	Student project. Seal scats were collected and investigated for hard parts. A DNA analysis was also performed to complement the prey species diversity. I have used data from table 3, which only included the total number of otoliths found.
Friis et al. (1994)	n=30 scats n=2 scats	0	0	Ejerslev Røn in Limfjorden Livø Tap in Limfjorden	12th, 14th & 17th October, 1990.	Seal feces were collected. Otoliths were sorted and identified. Diet was presented as number of otoliths recovered.

Härkönen (1987)	n=314	0	0	South of Koster Island in	Almost every month from	Feces were collected and otoliths
	scats			Skagerrak	1977-1979.	were extracted and identified to
						species level.
	n=63			Anholt island in central	July-September, 1980.	8572 otoliths were found.
	scats			Kattegat		Diet was presented as weight
				C		percentage.
Härkönen (1988)	n=32	0	0	Koster	During June, 1980.	Scats were collected and otoliths
, , ,	scats					were extracted and identified.
						Diet was presented as total number
	n=60			Kattegat (Anholt and	From May-September.	of otoliths found for each prey
	scats			Møllegrunden/Svane-		species.
				grunden)		•
Härkönen &	n=?	0	0	Koster archipelago in	July-December, 1989.	Scats were collected and otoliths
Heide-Jørgensen				Skagerrak		were identified to species level.
(1991)						They do not write how many scats
						they collected.
						Diet was given as total number of
						otoliths found for each prey
						species.
Kauhala <i>et al</i> .	0	n=136	0	The Gulf of Finland,	2001-2007.	In Finnish but with an English
(2011)		digestive		Southwest Archipelago,		summary and figure description.
		tracts		Bothnian Sea, Bothnian		They used the stomachs and
				Bay & Kvarken.		intestines to investigate the diet of
						grey seals. Prey items was mainly
						identified by the otoliths but also
						other hard parts were used.
						Diet presented in frequency of
						occurrence.
Lagström (2007)	0		0	8 collected at Sundsvalls	Summer, 2007.	A student project.
		digestive		Bay & 6 collected in a		Grey seals caught in seal
		tracts		area around Harte in the		traps/modified salmon traps and the
				Bothnian Sea.		content of hard parts (otoliths,
						scales and vertebrates) from the
						digestive tracts were identified.
						Diet shown in a calculated number
						of prey individuals.

Lundström et al. (2007) Lundström et al. (2014)	0	n=138 digestive tracts 0	0 n=43 digestive tracts	Gulf of Bothnia, Baltic Proper & a few with unknown origins. Northwestern Bothnian Bay	Most of the individuals were collected from the last three quarters of the year, with a peak in May, from 2001-2004. 2007-2009, mainly from 2008.	Bycaught and hunted seals. Otoliths and other hard parts were identified. Diet was presented as estimated number of prey individuals eaten. Hunted seals. Diet shown as frequency of occurrence and biomass index,
						other hard parts recovered. Ongoing investigation.
Sinisalo <i>et al.</i> (2006; 2007; 2008)	0	0	n=9	Hailuoto Island in the northern part of the Gulf of Bothnia.		Diet was identified by combining parasitological studies of the intestinal helminths, with analysis of the content of the alimentary tract and with stable isotope ratio analyses of seal tissue. Diet are presented by listing which species that are present.
Stenman & Pöyhönen (2005)	0	n=561 digestive tracts	n=126 digestive tracts	Gulf of Finland, Archipelago Sea, Gulf of Bothnia.	1986-2004	Analysis of the content in digestive tracts, mainly based on identifying otoliths to species level. Almost no details about the diet. Before 2000, mainly bycaught young-of-the year individuals.
Strömberg <i>et al.</i> (2013)	n=44	n=97 digestive tracts	0	 81 grey seals from the Gulf of Bothnia and 61 from the Baltic proper. 36 harbour seals from Kattegat and 8 harbour seals from Skagerrak. 	2010	Digestive tracts were emptied and examined to find hard parts, which were identified to species level. Diet presented as frequency of occurrence and weight proportion.
Suuronen & Lehtonen (2012)	0	n=63 digestive tracts	n=37 digestive tracts	Northern part of the Bothnian Bay	From mid-May to late November, 2008 & 2009.	Seals were collected by shooting them. Prey species were determined by identifying fish otoliths as well as

						other hard parts found in the digestive tracts.
						Diet was estimated as number of
						individuals, by dividing the number
						of otoliths recovered.
Söderberg (1975)	n=7	n=144	n=52	Harbour seals were	March 1968 to June 1971.	They examined digestive tracts to
	digestive	digestive	digestive	collected in the Swedish		find otoliths, which were used to
	tracts	tracts	tracts	Baltic sea.		determine prey species.
						They have calculated the number of
				Grey seals were mainly		individual prey species found to
				collected in the Baltic		estimate the diet.
				Proper.		
				Ringed seals were		
				collected in the Gulf of		
				Bothnia.		
Tormosov &	0	n=43	n=58	The Gulf of Finland	Grey seals data were	Stomach contents and intestines
Rezvov (1978)		digestive	digestive		collected from August-	were analysed and prey species was
		tracts	tracts		September.	identified with otoliths and bone
						remains.
					Ringed seals data were	Diet was presented as frequency of
					collected from	occurrence.
T	4	0	0	D.1.1	September-October.	
Jarnit (2014)	n=4 scats	n=9 scats	0	Rødsand	2014	Unpublished student project.
						of otoliths recovered
			1			of otomuls recovered.

Appendix B

Appendix B: Harbour seals (*Phoca vitulina*) geographic variations in diet shown as presence/absence of each fish species. The squares highlighted with grey indicate that the fish species have been found at least once in the samples from that location. If the squares are blank, this indicates that the fish species have not been found in any samples from that site. "Areas on the map" refers to fig. 1. Where; A: Limfjorden; B: Skagerrak; C: Kattegat; D: Southwestern Baltic Sea; E: Kalmarsund.

Fish species:		Areas on the map:	Α	В	С	D	E
Family	Scientific name:	Common name:	Presence /absence	Presence /absence	Presence /absence	Presence /absence	Presence /absence
Ammodytidae	Ammodytes tobianus	Lesser sand eel					
	Hyperoplus lanceolatus	Greater sand eel					
	Ammodytes sp.	Unidentified sand lances					
Anarhichadidae	Anarhichas lupus	Atlantic wolffish					
Anguillidae	Anguilla anguilla	European eel					
Argentinidae	Argentina silus	Greater argentine					
Belonidae	Belone belone	Garfish					
Callionymidae	Callionymus lyra	Dragonet					
Carangidae	Trachurus trachurus	Atlantic horse mackerel					
Clupeidae	Clupea harengus	Atlantic herring					
	Sprattus sprattus	Sprat					
Cottidae	Myoxocephalus scorpius	Shorthorn sculpin					
	Taurulus bubalis	Long-spined sea scorpion					
Cyprinidae	Rutilus rutilus	Roach					
Gadidae	Enchelyopus cimbrius	Four-bearded rockling					
	Gadus morhua	Atlantic cod					
	Melanogrammus aeglefinus	Haddock					
	Merlangius merlangus	Whiting					
	Micromesistius poutassou	Blue whiting					
	Pollachius pollachius	Pollack					

Pollachius virens	Saithe					
Trisopterus esmarkii	Norway pout					
Trisopterus minutus	Poor cod					
Gadids sp.	Unidentified gadids					
Gobius niger	Black goby					
Neogobius melanostomus	Round goby					
Pomatoschistus minutus	Sand goby					
Gobiids sp.	Unidentified gobies					
Ctenolabrus rupestris	Goldsinny wrasse					
Labrus bergylta	Ballan wrasse					
Labrus mixtus	Cuckoo wrasse					
Labrids sp.	Unidentified wrasses					
Molva molva	Ling					
Merluccius merluccius	Hake					
Gymnocephalus cernua	Ruffe					
Pholis gunnellus	Butterfish					
Glyptocephalus cynoglossus	Witch					
Hippoglossoides platessoides	American plaice					
Limanda limanda	Dab					
Microstomus kitt	Lemon sole					
Platichthys flesus	European flounder					
Pleuronectes platessa	Plaice					
Pleuronectids sp.	Unidentified pleuronectids					
Coregonus lavaretus	European whitefish					
	Unidentified salmo sp.					
Scomber scombrus	Atlantic mackerel					
Scophthalmus maximus	Turbot					
	Pollachius virens Trisopterus esmarkii Trisopterus minutus Gadids sp. Gobius niger Neogobius melanostomus Pomatoschistus minutus Gobiids sp. Ctenolabrus rupestris Labrus bergylta Labrus bergylta Labrids sp. Molva molva Merluccius merluccius Gymnocephalus cernua Pholis gunnellus Glyptocephalus cynoglossus Hippoglossoides platessoides Limanda limanda Microstomus kitt Platichthys flesus Pleuronectids sp. Coregonus lavaretus Scomber scombrus	Pollachius virensSaitheTrisopterus esmarkiiNorway poutTrisopterus minutusPoor codGadids sp.Unidentified gadidsGobius nigerBlack gobyNeogobius melanostomusRound gobyPomatoschistus minutusSand gobyGobiids sp.Unidentified gobiesCtenolabrus rupestrisGoldsinny wrasseLabrus bergyltaBallan wrasseLabrus mixtusCuckoo wrasseLabrus mixtusLingMolva molvaLingMerluccius merlucciusHakeGyptocephalus cernuaRuffePholis gunnellusButterfishGlyptocephalus cynoglossusWitchHippoglossoides platessoidesAmerican plaicePlatichthys flesusEuropean flounderPleuronectes platessaPlaicePleuronectids sp.Unidentified pleuronectidsCoregonus lavaretusEuropean whitefishScomber scombrusAtlantic mackerelScophthalmus maximusTurbot	Poliachius virensSattheTrisopterus esmarkiiNorway poutTrisopterus minutusPoor codGadids sp.Unidentified gadidsGobius nigerBlack gobyNeogobius melanostomusRound gobyPomatoschistus minutusSand gobyGobiids sp.Unidentified gobiesCtenolabrus rupestrisGoldsinny wrasseLabrus bergyltaBallan wrasseLabrus sixtusCuckoo wrasseLabrus mixtusCuckoo wrasseMolva molvaLingMerluccius merlucciusHakeGymnocephalus cernuaRuffePholis gunnellusButterfishGlyptocephalus cynoglossusWitchHippoglossoides platessoidesAmerican plaiceLimanda limandaDabMicrostomus kittLemon solePleuronectes platessaPlaicePleuronectids sp.Unidentified pleuronectidsCoregonus lavaretusEuropean whitefishScomber scombrusAtlantic mackerelScophthalmus maximusTurbot	Poliachius virensSaitheTrisopterus esmarkiiNorway poutTrisopterus minutusPoor codGadids sp.Unidentified gadidsGobius nigerBlack gobyNeogobius melanostomusRound gobyPomatoschistus minutusSand gobyGobids sp.Unidentified gobiesGobids sp.Unidentified gobiesCtenolabrus rupestrisGoldsinny wrasseLabrus bergyltaBallan wrasseLabrus mixtusCuckoo wrasseLabrus mixtusCuckoo wrasseMolva molvaLingMerluccius merlucciusHakeGlyptocephalus cernuaRuffePholis gunnellusButterfishGlyptocephalus cynoglossusWitchHippoglossoides platessoidesAmerican plaiceLimanda limandaDabMicrostomus kittLemon solePleuronectes platessaPlaicePleuronectids sp.Unidentified pleuronectidsCoregonus lavaretusEuropean flounderPleuronectids sp.Unidentified salmo sp.Scomber scombrusAtlantic mackerelScophthalmus maximusTurbot	Poliachius virensSaitheTrisopterus esmarkiiNorway poutTrisopterus esmarkiiNorway poutGadids sp.Unidentified gadidsGobius nigerBlack gobyNeogobius melanostomusRound gobyPomatoschistus minutusSand gobyGobids sp.Unidentified gobiesGobids sp.Unidentified gobiesCtenolabrus rupestrisGoldsinny wrasseLabrus bergyltaBallan wrasseLabrus mixtusCuckoo wrasseLabrus mixtusCuckoo wrasseMolva molvaLingMerluccius merlucciusHakeGiptocephalus cernuaRuffePholis gunnellusButterfishBitpoglossoides platessoidesAmerican plaiceLimanda limandaDabMicrostomus kittLemon solePlatichthys flesusEuropean flounderPleuronectes platessaPlaicePlaiceUnidentified salmo sp.Scomber scombrusAtlantic mackerelScophthalmus maximusTurbotScophthalmus maximusTurbot	Pollachus virensSaitheTrisopterus esmarkiiNorway poutSaithePoor codGadids sp.Unidentified gadidsGobius nigerBlack gobyNeogobius melanostomusRound gobyPomatoschistus minutusSand gobyGobids sp.Unidentified gobiesGobids sp.Unidentified gobiesGobids sp.Unidentified gobiesCtenolabrus rupestrisGoldsinny wrasseLabrus bergyltaBallan wrasseLabrus mixtusCuckoo wrasseLabrus mixtusCuckoo wrasseMolva molvaLingMerluccius merlucciusHakeGymnocephalus cernuaRuffePholis gunnellusButterfishGlyptocephalus cynoglossusWitchHippoglossoides platessoidesAmerican plaiceLimanda limandaDabMicrostomus kittLemon solePleuronectids sp.Unidentified pleuronectidsCoregonus lavaretusEuropean whitefishGobiesIndentified salmo sp.Scomber scombrusAtlantic mackerelScophthalmus maximusTurbot

Solenidae	Solea solea	Sole					
Sternoptychidae	Maurolicus muelleri	Mueller's pearlside					
Stichaeidae	Lumpenus lampretaeformis	Snakeblenny					
Zoarcidae	Lycenchelys sarsi	Sars' eelpout					
	Zoarces viviparus	Viviparous eelpout					
		Total species found:	18	40	21	21	5

Appendix C

Appendix C: Grey seals (*Halichoerus grypus*) geographic variations in diet shown as presence/absence of each fish species. The squares highlighted with grey indicate that the fish species have been found at least once in the samples from that location. If the squares are blank, this indicates that the fish species have not been found in any samples from that site. "Areas on the map" refers to fig. 1. Where; D: Southwestern Baltic Sea; F: Gotland; G: Swedish Baltic Sea; H: Finnish Baltic Sea; I: Gulf of Finland; J: Gulf of Bothnia.

Fish species:		Areas on the map:	D	F	G	н	I	J
			Presence	Presence	Presence	Presence	Presence	Presence
Family:	Scientific name:	Common name:	/absence	/absence	/absence	/absence	/absence	/absence
Ammodytidae	Ammodytes tobianus	Lesser sand eel						
	Hyperoplus lanceolatus	Greater sand eel						
	Ammodytes sp.	Unidentified sand lances						
Anguillidae	Anguilla anguilla	European eel						
Clupeidae	Clupea harengus	Atlantic herring						
	Sprattus Sprattus	Sprat						
Cottidae	Myoxocephalus quadricornis	Fourhorn sculpin						
	Myoxocephalus scorpius	Shorthorn sculpin						
	Taurulus bubalis	Long-spined sea scorpion						
	Cottids sp	Unidentified sculpins						
Cyclopteridae	Cyclopterus lumpus	Lumpsucker						
Cyprinidae	Blicca bjoerkna	White bream						
	Rutilus rutilus	Roach						
	Cyprinids sp.	Unidentified carps						
Esocidae	Esox lucius	Northern pike						
Gadidae	Gadus morhua	Atlantic cod						
	Merlangius merlangus	Whiting						
Gasterosteidae	Gasterosteus aculeatus	Three-spined stickleback						
	Gasterosteides sp.	Unidentified sticklebacks						
Gobiidae	Gobius niger	Black goby						
	Gobiusculus flavescens	Two-spotted goby						

		Total species found:	9	9	32	17	9	17
Zoarcidae	Zoarces viviparus	Viviparous eelpout						
Scophthalmidae	Scophthalmus maximus	Turbot						
	Coregonus sp.	Unidentified Coregonus sp.						
	Salmo sp.	Unidentified salmonids						
	Salmo trutta	Brown trout						
	Salmo salar	Atlantic salmon						
	Coregonus lavaretus	European whitefish						
Salmonidae	Coregonus albula	Vendace						
	Pleuronectids sp.	Unidentified pleuronectids						
	Pleuronectes platessa	Plaice						
	Platichthys flesus	European flounder						
	Microstomus kitt	Lemon sole						
Pleuronectidae	Limanda limanda	Dab						
Petromyzontidae	Lampetra fluviatilis	River lamprey						
	Percids sp.	Unidentified percids						
	Sander lucioperca	Zander						
	Perca fluviatilis	Perch						
Percidae	Gymnocephalus cernua	Ruffe						
Osmeridae	Osmerus eperlanus	Smelt						
Merlucciidae	Merluccius merluccius	Hake						
	Lota lota	Burbot						
Lotidae	Enchelyopus cimbrius	Fourbeard rockling						
	Gobiids sp.	Unidentified gobies						
	Pomatoschistus minutus	Sand goby						
	melanostomus	Round goby						

Appendix D

Appendix D: Baltic ringed seals (*Pusa hispida*) geographic variations in diet shown as presence/absence of each fish species. The squares highlighted with grey indicate that the fish species have been found at least once in the samples from that location. If the squares are blank, this indicates that the fish species have not been found in any samples from that site. "Areas on the map" refers to fig. 1. Where; H: Finnish Baltic Sea; I: Gulf of Finland; J: Gulf of Bothnia.

Fish species:		Areas on the map:	н	I	J
			Presence	Presence	Presence
Family:	Scientific name:	Common name:	/absence	/absence	/absence
Ammodytidae	Ammodytes tobianus	Lesser sand eel			
	Ammodytes sp.	Unidentified sand lances			
Anguillidae	Anguilla anguilla	European eel			
Clupeidae	Clupea harengus	Atlantic herring			
	Sprattus Sprattus	Sprat			
Cottidae	Myoxocephalus quadricornis	Fourhorn sculpin			
	Myoxocephalus scorpius	Shorthorn sculpin			
Gadidae	Gadus morhua	Atlantic cod			
Gasterosteidae	Gasterosteus aculeatus	Three-spined stickleback			
Gobiidae	Pomatoschistus minutus	Sand goby			
Osmeridae	Osmerus eperlanus	Smelt			
Percidae	Gymnocephalus cernua	Ruffe			
	Perca fluviatilis	Perch			
Petromyzontidae	Lampetra fluviatilis	River lamprey			
Salmonidae	Coregonus albula	Vendace			
	Coregonus lavaretus	European whitefish			
	Salmo salar	Atlantic salmon			
	Salmo trutta	Brown trout			
	Salmo sp.	Unidentified salmonids			
Zoarcidae	Zoarces viviparus	Viviparous eelpout			
		Total species found:	5	7	20

Appendix E

Appendix E: Geographic variations in the harbour seals (*Phoca vitulina*) diet shown as the total count of otoliths recovered and as a percentage of each fish species frequency of occurrence out of the total otolith count within each geographic area. Fish species only indicated with a "p" for presence in the grouped data have been removed from this part of the analysis because frequency of occurrence cannot be calculated. "Areas on the map" refers to fig. 1. Where; A: Limfjorden; B: Skagerrak; C: Kattegat; D: Southwestern Baltic Sea; E: Kalmarsund.

Fish species:		Areas on the map:	Α		В		C		D		E	
			Total		Total		Total		Total		Total	
			number		number		number		number		number	
			of		of		of		of		of	
			otoliths		otoliths		otoliths		otoliths		otoliths	
Family:	Scientific name:	Common name:	found	%								
Ammodytidae	Ammodytes tobianus	Lesser sand eel	412	3.4					673	44.5		
	Hyperoplus lanceolatus	Greater sand eel	350	2.9					4	0.3		
	Ammodytes sp.	Unidentified sand lances	5	<0.1	1416	19.1	856	39.1				
Anarhichadidae	Anarhichas lupus	Atlantic wolffish			7	0.1						
Anguillidae	Anguilla anguilla	European eel	43	0.4	1	<0.1					20	41.7
Belonidae	Belone belone	Garfish							14	0.9		
Callionymidae	Callionymus lyra	Dragonet			11	0.1						
Carangidae	Trachurus trachurus	Atlantic horse mackerel			3	<0.1						
Clupeidae	Clupea harengus	Atlantic herring	424	3.5	381	5.1	3	0.1	80	5.3		
	Sprattus sprattus	Sprat	1318	10.8	446	6.0			30	2.0		
Cottidae	Myoxocephalus scorpius	Shorthorn sculpin	94	0.8								
		Long-spined sea										
	Taurulus bubalis	scorpion	12	0.1					4	0.3		
Cyprinidae	Rutilus rutilus	Roach							2	0.1		
Gadidae	Enchelyopus cimbrius	Four-bearded rockling			66	0.9	50	2.3	6	0.4		
	Gadus morhua	Atlantic cod	2	<0.1	848	11.4	117	5.3	174	11.5	8	16.7
	Melanogrammus											
	aeglefinus	Haddock			24	0.3						
	Merlangius merlangus	Whiting	2	<0.1	936	12.6	52	2.4				
	Micromesistius poutassou	Blue whiting			174	2.3						
	Pollachius virens	Saithe			21	0.3						
	Trisopterus esmarkii	Norway pout			1751	23.6						
	Trisopterus minutus	Poor cod			376	5.1	28	1.3				

	Gadids sp.	Unidentified gadids										
Gobiidae	Gobius niger	Black goby	3621	29.6	131	1.8			228	15.1		
	Neogobius melanostomus	Round goby							4	0.3		
	Pomatoschistus minutus	Sand goby	3622	29.6					2	0.1		
	Gobiids sp.	Unidentified gobies			10	0.1	3	0.1				
Labridae	Ctenolabrus rupestris	Goldsinny wrasse			31	0.4			24	1.6		
	Labrus bergylta	Ballan wrasse			14	0.2						
	Labrus mixtus	Cuckoo wrasse			18	0.2						
	Labrids sp.	Unidentified wrasses										
Lotidae	Molva molva	Ling			16	0.2						
Merlucciidae	Merluccius merluccius	Hake			5	0.1						
Percidae	Gymnocephalus cernua	Ruffe							2	0.1		
Pholidae	Pholis gunnellus	Butterfish	10	0.1					6	0.4		
	Glyptocephalus											
Pleuronectidae	cynoglossus	Witch			3	<0.1						
	Hippoglossoides											
	platessoides	American plaice			70	0.9						
	Limanda limanda	Dab	16	0.1	14	0.2	824	37.7	95	6.3		
	Microstomus kitt	Lemon sole			156	2.1						
	Platichthys flesus	European flounder	180	1.5	17	0.2	121	5.5	42	2.8	8	16.7
	Pleuronectes platessa	Plaice	486	4.0	44	0.6	130	5.9	27	1.8		
		Unidentified										
	Pleuronectids sp.	pleuronectids					3	0.1	40	2.6		
Salmonidae	Coregonus lavaretus	European whitefish									8	16.7
Scombridae	Scomber scombrus	Atlantic mackerel			2	<0.1						
Scophthalmidae	Scophthalmus maximus	Turbot									4	8.3
Solenidae	Solea solea	Sole	6	<0.1					2	0.1		
Sternoptychidae	Maurolicus muelleri	Mueller's pearlside			67	0.9						
	Lumpenus											
Stichaeidae	lampretaeformis	Snakeblenny			1	<0.1						
Zoarcidae	Lycenchelys sarsi	Sars' eelpout			3	<0.1						
	Zoarces viviparus	Viviparous eelpout	1625	13.3	286	3.9			54	3.6		
Unidentified	unidentified	Unidentified sp.	17	0.1	59	0.8						
		Total:	12245	100.0	7408	100.0	2187	100.0	1513	100.0	48	100.0

Appendix F

Appendix F: Geographic variations in the grey seals (*Halichoerus grypus*) diet shown as the total count of otoliths recovered and as a percentage of each fish species frequency of occurrence out of the total otolith count within each geographic area. Fish species only indicated with a "p" for presence in the grouped data have been removed from this part of the analysis because frequency of occurrence cannot be calculated. "Areas on the map" refers to fig. 1. Where; D: Southwestern Baltic Sea; F: Gotland; G: Swedish Baltic Sea; H: Finnish Baltic Sea; I: Gulf of Finland; J: Gulf of Bothnia.

Fish species:		Areas on the map:	D	D			G		J	J	
Family:	Scientific name:	Common name:	Total number of otoliths found	%	Total number of otoliths found	%	Total number of otoliths found	%	Total number of otoliths found	%	
Ammodytidae	Ammodytes tobianus	Lesser sand eel	1	3.2							
	, Ammodytes sp.	Unidentified sand lances					116	1.2			
Anguillidae	Anguilla anguilla	European eel	1	3.2			52	0.5			
Clupeidae	Clupea harengus	Atlantic herring			173	32.6	6908	70.4	906	24.4	
	Sprattus Sprattus	Sprat			166	31.3	926	9.4	34	0.9	
Cottidae	Myoxocephalus quadricornis	Fourhorn sculpin					12	0.1			
	Myoxocephalus scorpius	Shorthorn sculpin			15	2.8	6	0.1			
	Taurulus bubalis	Long-spined sea scorpion					8	0.1			
	Cottids sp	Unidentified sculpins					2	<0.1			
Cyclopteridae	Cyclopterus lumpus	Lumpsucker					2	<0.1			
Cyprinidae	Rutilus rutilus	Roach							10	0.3	
	Cyprinids sp.	Unidentified carps					156	1.5	134	3.6	
Esocidae	Esox lucius	Northern pike					14	0.1			
Gadidae	Gadus morhua	Atlantic cod			130	24.5	214	2.2			
Gasterosteidae	Gasterosteus aculeatus	Three-spined stickleback							4	0.1	
	Gasterosteides sp.	Unidentified sticklebacks			12	2.3					

Gobiidae	Gobius niger	Black goby	12	38.7						
	Gobiusculus flavescens	Two-spotted goby					38	0.4		
	Neogobius melanostomus	Round goby	9	29.0						
	Pomatoschistus minutus	Sand goby	1	3.2						
	Gobiids sp.	Unidentified gobies			10	1.9	14	0.1		
Lotidae	Enchelyopus cimbrius	Fourbeard rockling					8	<0.1		
	Lota lota	Burbot					4	<0.1	8	0.2
Merlucciidae	Merluccius merluccius	Hake	1	3.2						
Osmeridae	Osmerus eperlanus	Smelt					170	1.7	64	1.7
Percidae	Gymnocephalus cernua	Ruffe					18	0.2		
	Perca fluviatilis	Perch					42	0.4	36	1.0
	Sander lucioperca	Zander					2	<0.1		
Petromyzontidae	Lampetra fluviatilis	River lamprey							4	0.1
Pleuronectidae	Limanda limanda	Dab	3	9.7			42	0.4		
	Microstomus kitt	Lemon sole	1	3.2						
	Platichthys flesus	European flounder			15	2.8	104	1.1		
	Pleuronectes platessa	Plaice	2	6.5			2	<0.1		
Salmonidae	Coregonus albula	Vendace					14	0.1	1368	36.8
	Coregonus lavaretus	European whitefish					414	4.2	296	8.0
	Salmo salar	Atlantic salmon					76	0.8	30	0.8
	Salmo trutta	Brown trout					36	0.4	146	3.9
	Salmo sp.	Unidentified salmonids					4	<0.1	18	0.5
		Unidentified								
	Coregonus sp.	Coregonus sp.							294	7.9
Scophthalmidae	Scophthalmus maximus	Turbot			3	0.6	44	0.4		
Zoarcidae	Zoarces viviparus	Viviparous eelpout			6	1.1	254	2.6		
Unidentified	Unidentified	Unidentified sp.					106	1.0	364	9.8
		Total:	31	100.0	530	100.0	9808	100.0	3716	100.0

Appendix G

Appendix G: Geographic variations in the Baltic ringed seals (*Pusa hispida*) diet shown as the total count of otoliths recovered and as a percentage of each fish species frequency of occurrence out of the total otolith count within each geographic area. Fish species only indicated with a "p" for presence in the grouped data have been removed from this part of the analysis because frequency of occurrence cannot be calculated. "Areas on the map" refers to fig. 1. Where; H: Finnish Baltic Sea; I: Gulf of Finland; J: Gulf of Bothnia.

Fish species:		Areas on the map:	L	
Family:	Scientific name:	Common name:	Total number of otoliths found	%
Ammodytidae	Ammodytes sp.	Unidentified sand lances	72	1.6
Anguillidae	Anguilla anguilla	European eel	10	0.2
Clupeidae	Clupea harengus	Atlantic herring	608	13.6
Cottidae	Myoxocephalus quadricornis	Fourhorn sculpin	46	1.0
	Myoxocephalus scorpius	Shorthorn sculpin	24	0.5
Gadidae	Gadus morhua	Atlantic cod	26	0.6
Gasterosteidae	Gasterosteus aculeatus	Three-spined stickleback	3304	73.8
Osmeridae	Osmerus eperlanus	Smelt	98	2.2
Percidae	Gymnocephalus cernua	Ruffe	12	0.3
Salmonidae	Coregonus albula	Vendace	116	2.6
	Coregonus lavaretus	European whitefish	106	2.4
	Salmo salar	Atlantic salmon	22	0.5
	Salmo trutta	Brown trout	16	0.4
Zoarcidae	Zoarces viviparus	Viviparous eelpout	14	0.3
		lotal:	4474	100.0

Appendix H

Appendix H: Comparison of the three seal species; harbour seals (*Phoca vitulina*), grey seals (*Halichoerus grypus*) and Baltic ringed seals (*Pusa hispida*) diets from different geographic areas where samples from more than one seal species occurred. The squares highlighted with grey indicates that the fish species have been found at least once in the samples from that area. If the squares are blank, this indicates that the fish species have not been found in any samples from that site. The frequency of occurrence out of the total count of otoliths recovered from each seal species within each area is shown where this was possible to calculate. "Areas on the map" refers to fig. 1. Where; D: Southwestern Baltic Sea; H: Finnish Baltic Sea; I: Gulf of Finland; J: Gulf of Bothnia.

		Areas on the								
		map:		C		н		I		J
Fish species:		Seal species:	Harbour seal	Grey seal	Grey seal	Baltic ringed seal	Grey seal	Baltic ringed seal	Grey seal	Baltic ringed seal
	Scientific		Presence/	Presence/	Presence/	Presence/	Presence/	Presence/	Presence/	Presence/
Family	name:	Common name:	absence	absence	absence	absence	absence	absence	absence	absence
	Ammodytes									
Ammodytidae	tobianus	Lesser sand eel	44.5%	3.2%						
	Hyperoplus lanceolatus	Greater sand eel	0.3%							
		Unidentified								
	Ammodytes sp.	sand lances								1.6%
	Anguilla									
Anguillidae	anguilla	European eel		3.2%						0.2%
Belonidae	Belone belone	Garfish	0.9%							
	Clupea									
Clupeidae	harengus	Atlantic herring	5.3%		_				24.4%	13.6%
	Sprattus									
	sprattus	Sprat	2.0%						0.9%	
	Myoxocephalus	Fourhorn								4.004
Cottidae	quadricornis	sculpin								1.0%
	Myoxocephalus	Shorthorn								0.50
	scorpius	sculpin								0.5%
	laurulus	Long-spined sea	0.201							
	DUDAIIS	scorpion	0.3%							
	Cattila	Unidentified								
	cottias sp	sculpins								

Cyprinidae	Blicca bjoerkna	White bream							
Cyprinidae	Rutilus rutilus	Roach	0.1%					0.3%	
		Unidentified							
	Cyprinids sp.	carps						3.6%	
	Enchelyopus	Four-bearded							
Gadidae	cimbrius	rockling	0.4%						
	Gadus morhua	Atlantic cod	11.5%						0.6%
	Gasterosteus	Three-spined							
Gasterosteidae	aculeatus	stickleback						0.1%	73.8%
Gobiidae	Gobius niger	Black goby	15.1%	38.7%					
	Neogobius								
	melanostomus	Round goby	0.3%	29.0%					
	Pomatoschistus								
	minutus	Sand goby	0.1%	3.2%					
	Ctenolabrus	Goldsinny							
Labridae	rupestris	wrasse	1.6%						
Lotidae	Lota lota	Burbot						0.2%	
	Merluccius								
Merlucciidae	merluccius	Hake		3.2%					
	Osmerus								
Osmeridae	eperlanus	Smelt						1.7%	2.2%
	Gymnocephalu								
Percidae	s cernua	Ruffe	0.1%						0.3%
	Perca fluviatilis	Perch						1.0%	
		Unidentified							
	Percids sp.	percids							
	Lampetra								
Petromyzontidae	fluviatilis	River lamprey						0.1%	
	Pholis								
Pholidae	gunnellus	Butterfish	0.4%		_				
	Limanda								
Pleuronectidae	limanda	Dab	6.3%	9.7%					

	Microstomus									
	kitt	Lemon sole		3.2%						
	Platichthys	European								
	flesus	flounder	2.8%							
	Pleuronectes									
	platessa	Plaice	1.8%	6.5%						
	Pleuronectids	Unidentified								
	sp.	pleuronectids	2.6%							
	Coregonus									
Salmonidae	albula	Vendace							36.8%	2.6%
	Coregonus	European								
	lavaretus	whitefish							8.0%	2.4%
	Salmo salar	Atlantic salmon							0.8%	0.5%
	Salmo trutta	Brown trout							3.9%	0.4%
		Unidentified								
	Salmo sp.	salmonids							0.5%	
		Unidentified								
	Coregonus sp.	Coregonus sp.							7.9%	
Solenidae	Solea solea	Sole	0.1%							
	Zoarces	Viviparous								
Zoarcidae	viviparus	eelpout	3.6%							0.3%
	, ,									
	Total species found:		21	9	17	5	9	7	17	20